Название предмета Алгебра Класс 9 УМК (название учебника, автор, год издания) «Алгебра 9» Ю.Н Макарычев,2008 Уровень обучения: базовый У р о к 94 (1). Комбинаторные задачи. Комбинации с учетом и без учета порядка Цели: ввести понятие комбинаторной задачи, рассмотреть задачи с учетом и без учета порядка; формировать умения решать комбинаторные задачи полным перебором вариантов, а также с помощью графов. Ход урока I. Организационный момент. II. Устная работа. Решить старинную задачу VIII века: Волк, коза и капуста Некий человек должен был перевезти в лодке через реку волка, козу и капусту. В лодке мог поместиться только один человек, а с ним или волк, или коза, или капуста. Но если оставить волка с козой без человека, то волк съест козу, если оставить козу с капустой, то коза съест капусту, а в присутствии человека никто никого не ест. Как перевезти груз через реку? При решении этой задачи учащиеся комбинируют разные сочетания, оценивают варианты, получают следующее решение: III. Объяснение нового материала. 1. В математике существует немало задач, в которых требуется из имеющихся элементов составить различные наборы, подсчитать количество всевозможных комбинаций элементов, образованных по определенному правилу. Такие задачи называются комбинаторными, а раздел математики, занимающейся решением этих задач, называется комбинаторикой (от лат. combinare, которое означает «соединять, сочетать»). С комбинаторными задачами люди имели дело еще в глубокой древности, когда, например, они выбирали наилучшее расположение воинов во время охоты, придумывали узоры на одежде или посуде. Позже появились нарды, шахматы. Как ветвь математики комбинаторика возникла только в XVII в. В дальнейшем полем для приложения комбинаторных методов оказались биология, химия, физика. И, наконец, роль комбинаторики коренным образом изменилась с применением компьютеров: она превратилась в область, находящуюся на магистральном пути развития науки. 2. П р и м е р ы к о м б и н а т о р н ы х з а д а ч. Рассмотрим примеры, разобранные на с. 171–172 учебника. При этом обратим внимание учащихся, что в первой задаче в комбинациях нам не важен порядок элементов, а во второй задаче порядок элементов следует учитывать. Способ рассуждений, которым мы воспользовались при решении этих задач, называется перебором возможных вариантов. Смысл этих упражнений в том, чтобы показать учащимся преимущества организованного, систематического перебора вариантов. Не нужно перечислять числа произвольно, по принципу «что придет на ум». Нужна система: фиксируем один элемент и начинаем перебирать оставшиеся, анализируем и т. д. Демонстрируем ученикам преимущества наглядного представления комбинаций с помощью графов – полных либо графа-дерева. IV. Формирование умений и навыков. На этом уроке при решении задач следует особое внимание уделить анализу условий: является ли задача на комбинацию с учетом или без учета порядка элементов, как удобнее изобразить решение: с помощью графа или простым перечислением (полным перебором). № 715. В этой задаче не учитывается порядок элементов. Можно осуществлять перебор как в примере 1, а можно наглядно переставить в виде графа: В – Вера З – Зоя М – Марина П – Полина С – Светлана Ребра графа показывают связь в парах, таких ребер 10, значит, всего 10 вариантов выбора подруг. З а д а ч а. В столовой предлагают два первых блюда: щи и борщ; три вторых блюда: рыба, гуляш и плов; два третьих: компот и чай. Перечислите все возможные варианты обедов из трех блюд. Проиллюстрируйте ответ, построив дерево возможных вариантов. Р е ш е н и е Первое блюдо Второе блюдо Третье блюдо Варианты обеда щ – р – к (1) щ – р – ч (2) щ – г – к (3) щ – г – ч (4) щ – п – к (5) щ – п – ч (6) б – р – к (7) б – р – ч (8) б – г – к (9) б – г – ч (10) б – п – к (11) б – п – ч (12) О т в е т: 12 вариантов. № 716. В этой задаче при выборе пар входов порядок выбора имеет значение: АВ означает, что посетитель вошел через А, а вышел через В, а ВА означает, что вошел через В, а вышел через А. Фиксируем каждый вход по очереди и дописываем к нему в пару оставшиеся: А: АВ, АС, АD; В: ВА, ВС, ВD; С: СА, СВ, СD; D: DA, DB, DC. Итого – 12 вариантов. №. 718, № 720. При решении этих задач следует обратить внимание учащихся, что если мы из цифр составляем двузначное (трехзначное) число, то нуль не может стоять на первом месте. № 717. Заметим, что для указания способа раскладки яблок в две вазы достаточно указать способ заполнения одной вазы, поскольку все, что не попадает в первую вазу, попадает во вторую. Вообще, во всех случаях, когда п элементов нужно разбить на 2 группы, при подсчете количества способов разбиения достаточно подсчитать число способов формирования одной половины. V. Итоги урока. В о п р о с ы у ч а щ и м с я: – Какие задачи называются комбинаторными? – Приведите примеры ситуаций выбора комбинаций с учетом и без учета порядка элементов. – В чем сущность способа полного перебора вариантов? – Из чего состоит граф (граф-дерево) возможных вариантов? Домашнее задание: № 714, № 719, № 721, № 729
Автор(ы): Джанаева О. В.
Скачать: Алгебра 9кл - Конспект.docx