Алгебра , 9 класс УМК: А.Г.Мордкович. Алгебра. 9 класс. В 2ч. Ч.1.Учебник; Ч.2.Задачник; М.: Мнемозина, 2010 Уровень обучения: базовый Тема урока: Системы рациональных неравенств. (Первый урок по теме, всего на изучение темы отводится 3 часа) Урок изучения новой темы. Цель урока: повторить решение линейных неравенств; ввести понятия системы неравенств, объяснить решение простейших систем линейных неравенств; формировать умение решать системы линейных неравенств любой сложности. Задачи: Образовательные: изучение темы на основе имеющихся знаний, закрепление практических умений и навыков решений систем линейных неравенств в результате самостоятельной работы учащихся и лекционно-консультативной деятельности наиболее подготовленных из них. Развивающие: развитие познавательного интереса, самостоятельности мышления, памяти, инициативы учащихся через использование коммуникативно - деятельностной методики и элементов проблемного обучения. Воспитательные: формирование коммуникативных умений, культуры общения, сотрудничества. Методы проведения: - лекция с элементами беседы и проблемного обучения; -самостоятельная работа учащихся с теоретическим и практическим материалом по учебнику; -выработка культуры оформления решения систем линейных неравенств. Планируемые результаты : учащиеся вспомнят как решать линейные неравенства, отмечать пересечение решений неравенств на числовой прямой, научатся решать системы линейных неравенств. Оборудование урока: классная доска, раздаточный материал (приложение), учебники, рабочие тетради. Содержание урока: 1. Организационный момент. Проверка домашнего задания. 2. Актуализация знаний. Учащиеся вместе с учителем заполняют таблицу на доске : Неравенство Рисунок Промежуток Ниже приводится готовая таблица: Неравенство Рисунок Промежуток 3. Математический диктант. Подготовка к восприятию новой темы. 1.По образцу таблицы решить неравенства: Вариант 1 Вариант 2 Вариант 3 Вариант 4 2.Решить неравенства, нарисовать два рисунка на одной оси и проверить, является число 5 решением двух неравенств: Вариант 1 Вариант 2 Вариант 3 Вариант 4 4. Объяснение нового материала. Объяснение нового материала (стр.40-44): 1. Дать определение системы неравенств ( стр. 41). Опр-е: Несколько неравенств с одной переменной х образуют систему неравенств, если ставиться задача найти все такие значения переменной, при которых каждое из заданных неравенств с переменной обращается в верное числовое неравенство. 2. Ввести понятие частное и общее решение системы неравенств. Любое такое значение х называют решением (или частным решением) системы неравенств. Множество всех частных решений системы неравенств представляет собой общее решение системы неравенств. 3. Рассмотреть в учебнике решение систем неравенств по примеру №3(а, б, в). 4. Обобщить рассуждения, решив систему:. 5. Закрепление нового материала. Решить задания из № 4.20 (а,б), 4.21 (а,б) . 6. Проверочная работа Проверить усвоение нового материала, активно помогая в решении заданий по вариантам: Вариант 1 а, в №4.6, 4.8 Вариант 2 б, г № 4.6, 4.8 7. Подведение итогов. Рефлексия С какими новыми понятиями вы сегодня познакомились? Научились ли вы находить решения системы линейных неравенств? Что вам более всего удалось, какие моменты были выполнены наиболее успешно? 8. Домашнее задание: № 4.5, 4.7.; теория в учебнике стр. 40-44; Для учащихся с повышенной мотивацией № 4.23 (в,г). Приложение . Вариант 1. Неравенство Рисунок Промежуток 2.Решить неравенства, нарисовать два рисунка на одной оси и проверить, является число 5 решением двух неравенств: Неравенства Рисунок Ответ на вопрос. Вариант 2. Неравенство Рисунок Промежуток 2.Решить неравенства, нарисовать два рисунка на одной оси и проверить, является число 5 решением двух неравенств: Неравенства Рисунок Ответ на вопрос. Вариант 3. Неравенство Рисунок Промежуток 2.Решить неравенства, нарисовать два рисунка на одной оси и проверить, является число 5 решением двух неравенств: Неравенства Рисунок Ответ на вопрос. Вариант 4. Неравенство Рисунок Промежуток 2.Решить неравенства, нарисовать два рисунка на одной оси и проверить, является число 5 решением двух неравенств: Неравенства Рисунок Ответ на вопрос.
Автор(ы):
Скачать: Алгебра 9кл - конспект [Безденежных Л.В.].docx Алгебра 9класс УМК: АЛГЕБРА-9КЛАСС, А.Г. МОРДКОВИЧ.П.В. Семёнов, 2014год. Уровень -- обучения-базовый Тема урока: Системы рациональных неравенств Общее количество часов, отведенное на изучение темы-4часа Место урока в системе уроков по теме урок №2 ;№3; №4. Цель урока: Научить учащихся составлять системы неравенств, а также научить решать уже готовые системы, предложенные автором учебного пособия. Задачи урока: Формировать умения: свободно решать системы неравенств аналитически, а также уметь переносить решение на координатную прямую с целью правильной записи ответа, самостоятельно работать с заданным материалом. .Планируемые результаты: Учащиеся должны уметь решать уже готовые системы , а также составлять системы неравенств по текстовому условию заданий и решать составленную модель. Техническое обеспечение урока:УМК: АЛГЕБРА-9КЛАСС, А.Г. МОРДКОВИЧ.П.В. Семёнов. Рабочая тетрадь, проектор для проведения устного счёта, распечатки дополнительных заданий для сильных учащихся. Дополнительное методическое и дидактическое обеспечение урока (возможны ссылки на Интернет-ресурсы): 1.Пособие Н.Н.Хлевнюк, М.В. Иванова, В.Г. Иващенко, Н.С. Мелкова «Формирование вычислительных навыков на уроках математики 5-9 классы» 2.Г.Г.Левитас «Математические диктанты» 7-11 класс.3. Т.Г. Гулина «Математический тренажёр» 5-11 ( 4 уровня сложности ) Учитель математики: Зверева Л.П. У р о к № 2 Цели: Отработка навыков решения системы рациональных неравенств с использованием для наглядности результата решения геометрической интерпретации. Ход урока 1.Организационный момент: Настрой класса на работу , сообщение темы и цели урока 11 Проверка домашней работы 1. Теоретическая часть: * Что собой представляет аналитическая запись рационального неравенства * Что собой представляет аналитическая запись системы рациональных неравенств *Что значит решить систему неравенств *Чем является результат решения системы рациональных неравенств. 2. Практическая часть : *Решить на доске задания, вызвавшие затруднения у учащихся. В ходе выполнения домашнего задания II1 Выполнение упражнений. 1.Повторить способы разложения многочлена на множители. 2. Повторить, в чем заключается метод интервалов при решении неравенств. 3. Решить систему . Решение ведёт ученик сильный у доски под контролем учителя. 1) Решим неравенство 3х – 10 > 5х – 5; 3х – 5х> – 5 + 10; – 2х> 5; х< – 2,5. 2) Решим неравенство х2 + 5х + 6 < 0; Найдём корни данного трёхчлена х2 + 5х + 6 = 0; D = 1; х1=-3 х2 = – 2; тогда квадратный трёхчлен разложим по корням (х + 3)(х + 2) < 0. Имеем – 3 <х< – 2. 3) Найдем решение системы неравенств , для этого вынесим оба решения на одну числовую прямую. Вывод: решения совпали на промежутке от-3 до - 2,5(произошло перекрытие штриховок) О т в е т: – 3 <х< – 2,5. 4. Решить № 4.9 (б) самостоятельно споследующей проверкой. О т в е т: нет решений. 5.Повторяем теорему о квадратном трехчлене с отрицательным и положительным дискриминантом. Решаем №4.10(г) 1) Решим неравенство – 2х2 + 3х – 2 < 0; Найдём корни – 2х2 + 3х – 2 = 0; D = 9 – 16 = = – 7 < 0. По теореме неравенство верно при любых значениях х. 2) Решим неравенство –3(6х – 1) – 2х<х; – 18х + 3 – 2х<х; – 20х – х<< – 3; – 21х<– 3; 3) х> Решение данной системы неравенств х> О т в е т: х> 6. Решить № 4.10 (в) на доске и в тетрадях. Решим неравенство 5х2 – 2х + 1 ≤ 0. 5х2–2х + 1 = 0; D = 4 – 20 = –16 < 0. По теореме неравенство не имеет решений, а это значит, что данная система не имеет решений. О т в е т: нет решений. 7. Решить № 4.11 (в) самостоятельно. Один учащийся решает на доске, другие в тетрадях, потом проверяется решение. в) 1) Решим неравенство 2х2 + 5х + 10 > 0. 2х2 + 5х + 10 = 0; D = –55 < 0. По теореме неравенство верно при всех значениях х.-любое число 2) Решим неравенство х2 ≥ 16; х2 – 16 ≥ 0; (х – 4)(х + 4) ≥ 0; х = 4; х = – 4. Решение х ≤ –4 их ≥ 4. Объединяем решения двух неравенств в систему 3) Решение системы неравенств являются два неравенства О т в е т: х ≤ – 4; х ≥ 4. 8. Решить № 4.32 (б) на доске и в тетрадях. Решение Наименьшее целое число равно –2; наибольшее целое число равно 6. О т в е т: –2; 6. 9. Повторение ранее изученного материала. 1) Решить № 4.1 (а; -г) 4.2(а-г) на с. 25 устно. 2) Решить графически уравнение Строим графики функций y = –1 – x. О т в е т: –2. III. Итоги урока. 1. В курсе алгебры 9 класса мы будем рассматривать только системы из двух неравенств. 2. Если в системе из нескольких неравенств с одной переменной одно неравенство не имеет решений, то и система не имеет решений. 3. Если в системе из двух неравенств с одной переменной одно неравенство выполняется при любых значениях переменной, то решением системы служит решение второго неравенства системы. Домашнее задание: рассмотреть по учебнику решение примеров 4 и 5 на с. 44–47 и записать решение в тетрадь; решить № 4.9 (а; в), № 4.10 (а; б), № 4.11 (а; б), № 4.13 (а;б). . У р о к 3 Цели: Научить учащихся при решении двойных неравенств и нахождении области определения выражений, составлять системы неравенств и решать их , а также научить решать системы содержащих модули; Ход урока 1.Организационный момент: Настрой класса на работу, сообщение темы и цели урока 1I. Проверка домашнего задания. 1. Проверить выборочно у нескольких учащихся выполнение ими домашнего задания. 2. Решить на доске задания, вызвавшие затруднения у учащихся. 3. Устно решить № 4.2 (б) и № 4.1 (г). 4.Устная вычислительная работа: Вычисли рациональным способом: а)53,76*(-7.9) -53,76 *2,1 б) -0,125*32.6*(-8) в) Выразим указанную переменную из заданной формулы: 2a= ,y=? II. Объяснение нового материала. 1. Двойное неравенство можно решить двумя способами: а) сведением к системе двух неравенств; б) без системы неравенств с помощью преобразований. 2. Решить двойное неравенство № 4.15 (в) двумя способами. а) сведением к системе двух неравенств; I с п о с о б Решение – 2 <х< – 1. О т в е т: (– 2; – 1). б) без системы неравенств с помощью преобразований II с п о с о б 6 < – 6х< 12 | : (– 6) – 1 >х> – 2, тогда – 2 < х < – 1. О т в е т: (– 2; – 1). 3. Решить № 4.16 (б; в). I с п о с о б сведением к системе двух неравенств; б) – 2 ≤ 1 – 2х ≤ 2. Решим систему неравенств: О т в е т: II с п о с о б без системы неравенств с помощью преобразований – 2 ≤ 1 – 2х ≤ 2; прибавим к каждой части неравенства число (– 1), получим – 3 ≤ – 2х ≤ 1; разделим на (– 2), тогда в) – 3 << 1. Умножим каждую часть неравенства на 2, получим – 6 < 5х + 2 < 2. Решим систему неравенств: О т в е т: – 1,6 <х< 0. III. Выполнение упражнений. 1. Решить № 4.18 (б) и № 4.19 (б) на доске и в тетрадях. 2. Решить № 4.14 (в) методом интервалов. в) 1) х2 – 9х + 14 < 0; Найдём корни квадратного трёхчлена и разложим квадратный трёхчлен по корням (х – 7)(х – 2) < 0; х = 7; х = 2 Решение 2<х< 7. 2) х2 – 7х – 8 ≤ 0; Найдём корни квадратного трёхчлена и разложим квадратный трёхчлен по корням (х – 8)(х + 1) ≤ 0; х = 8; х = – 1 Решение – 1 ≤ х ≤ 8. Соединим решения каждого неравенства на одной прямой т.е. создадим геометрическую модель. та часть прямой где произошло пересечение решений есть конечный результат О т в е т: 2 <х< 7. 4) Решить № 4.28 (в) самостоятельно с проверкой. в) Решим систему неравенств составленную из подкоренных выражений. 1) (х – 2)(х – 3) ≥ 0; х = 2; х = 3 Решение х ≤ 2 и х ≥ 3. 2) (5 – х)(6 – х) ≥ 0; – 1(х – 5) · (– 1)(х – 6) ≥ 0; (х – 5)(х – 6) ≥ 0 х = 5; х = 6 Решение х ≤ 5 и х ≥ 6. 3) О т в е т: х ≤ 2, 3 ≤ х ≤ 5, х ≥ 6. 5. Решение систем неравенств, содержащих переменную под знаком модуля. Решить № 4.34 (в; г). Учитель объясняет решение в) 1) | х + 5 | < 3 находим точку где модуль обращается в 0 х = -5 Решение – 8 <х< – 2. 2) | х – 1 | ≥ 4 находим точку где модуль обращается в 0 х = 1 Решение х ≤ – 3 и х ≥ 5. Соединили решения каждого неравенства в единую модель 3) О т в е т: – 8 <х ≤ 3. г) 1) | х – 3 | < 5; Решение – 2 <х< 8. 2) | х + 2 | ≥ 1 Решение х ≤ – 3 и х ≥ – 1. 3) О т в е т: –1 ≤ х< 8. 6. Решить № 4.31 (б). Учащиеся решают самостоятельно. Один ученик решает на доске, остальные в тетрадях, затем проверяется решение. б) Решение Середина промежутка О т в е т: 7. Решить № 4.38 (а; б). Учитель на доске с помощью числовой прямой показывает решение данного упражнения, привлекая к рассуждениям учащихся. О т в е т: а) р< 3; р ≥ 3; б) р ≤ 7; р> 7. 8. Повторение ранее изученного материала. Решить № 2.33. Пусть первоначальная скорость велосипедиста х км/ч, после уменьшения стала (х – 3) км/ч. 15x – 45 + 6x = 1,5x(x – 3); 21x – 45 = 1,5x2 – 4,5x; 1,5x2 – 25,5x + 45 = 0 | : 1,5; тогда х2 – 17х + 30 = 0; D = 169; х1 = 15; х2 = 2 не удовлетворяет смыслу задачи. О т в е т: 15 км/ч; 12 км/ч. IV.Вывод по уроку: Науроке учились решать системы неравенств усложнённого вида особенно с модулем, попробовали свои силы в самостоятельной работе. Выставление отметок. Домашнее задание: выполнить на отдельных листочках домашнюю контрольную работу №1 с № 7 по № 10 на с. 32–33 , № 4.34 (а; б), № 4.35 (а; б). У р о к 4 Подготовка к контрольной работе Цели: обобщить и систематизировать изученный материал, подготовить учащихся к контрольной работе по теме «Системы рациональных неравенств» Ход урока 1. Организационный момент: Настрой класса на работу, сообщение темы и цели урока. 11.Повторение изученного материала. *Что значит решить систему неравенств *Чем является результат решения системы рациональных неравенств 1. Собрать листочки с выполненной домашней контрольной работой. 2. Какие правила применяют при решении неравенств? Объясните решение неравенств: а) 3х – 8 <х + 2; б) 7(х – 1) ≥ 9х + 3. 3. Сформулируйте теорему для квадратного трехчлена с отрицательным дискриминантом. Устно решите неравенства: а) х2 + 2х + 11 > 0; б) – 2х2 + х – 5 > 0; в) 3х2 – х + 4 ≤ 0. 4. Сформулируйте определение системы неравенств с двумя переменными. Что значит решить систему неравенств? 5. В чем заключается метод интервалов, активно используемый при решении рациональных неравенств? Объясните это на примере решения неравенства: (2x – 4)(3 – x) ≥ 0; I11. Тренировочные упражнения. 1. Решить неравенство: а) 12(1 – х) ≥ 5х – (8х + 2); б) – 3х2 + 17х + 6 < 0; в) 2. Найдите область определения выражения. а) f(х) = 12 + 4х – х2 ≥ 0; – х2 + 4х + 12 ≥ 0 | · (– 1); х2 – 4х – 12 ≤ 0; D = 64; х1 = 6; х2 = – 2; (х – 6)(х + 2) ≤ 0 О т в е т: – 2 ≤ х ≤ 6 или [– 2; 6]. б) f(х)= х2 + 2х + 14 ≥ 0; D< 0. По теореме о квадратном трехчлене с отрицательным дискриминантом имеемх – любое число. О т в е т: множество решений или (– ∞; ∞). 2. Решите двойное неравенство и укажите, если возможно, наибольшее и наименьшее целое решение неравенства Р е ш е н и е Умножим каждую часть неравенства на 5, получим 0 – 5 < 3 – 8х ≤ 15; – 8 < – 8х ≤ 12; – 1,5 ≤ х< 1. Наибольшее целое число 0, наименьшее целое число (– 1). О т в е т: 0; – 1. 4. Решить № 76 (б) на доске и в тетрадях. б) Р е ш е н и е Для нахождения области определения выражения решим систему неравенств 1) х = х = 5. Решение ≤х< 5. 2) Решение х< 3,5 и х ≥ 4. 3) О т в е т: ≤х< 3,5 и 4 ≤ х< 5. 5. Найти область определения выражения. а) f(х) = б) f(х) = а) О т в е т: – 8 <х ≤ – 5; х ≥ – 3. б) О т в е т: х ≤ – 3; – 2 <х ≤ 4. 6. Решить систему неравенств (самостоятельно). Р е ш е н и е Выполнив преобразования каждого из неравенств системы, получим: О т в е т: нет решений. 7. Решить № 4.40*. Решение объясняет учитель. Если р = 2, то неравенство примет вид 2х + 4 > 0, х> – 2. Это не соответствует ни заданию а), ни заданию б). Значит, можно считать, что р ≠ 2, то есть заданное неравенство является квадратным. а) Квадратное неравенство вида ах2 + bх + с> 0 не имеет решений, если а< 0, D< 0. Имеем D = (р – 4)2 – 4(р – 2)(3р – 2) = – 11р2 + 24р. Значит, задача сводится к решению системы неравенств Решив эту систему, получим р< 0. б) Квадратное неравенство вида ах2 + bх + с> 0 выполняется при любых значениях х, если а> 0 и D< 0. Значит, задача сводится к решению системы неравенств Решив эту систему, получим р> IV. Итоги урока. Необходимо дома просмотреть весь изученный материал и подготовиться к контрольной работе. Домашнее задание: № 1.21 (б; г), № 2.15 (в; г); № 4.14 (г), № 4.28 (г); № 4.19 (а), № 4.33 (г).
Автор(ы):
Скачать: Алгебра 9кл - конспект уроков 2-4 [Зверева Л.П.].docx